(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(*(x, y), *(x, z)) → *(x, +(y, z))
+(+(x, y), z) → +(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(*(x3385_0, y), *(x3385_0, z)) →+ *(x3385_0, +(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / *(x3385_0, y), z / *(x3385_0, z)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)

Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
+'

(8) Obligation:

TRS:
Rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)

Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u

Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))

The following defined symbols remain to be analysed:
+'

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
+'(gen_*':u3_0(+(1, 0)), gen_*':u3_0(+(1, 0)))

Induction Step:
+'(gen_*':u3_0(+(1, +(n5_0, 1))), gen_*':u3_0(+(1, +(n5_0, 1)))) →RΩ(1)
*'(hole_a2_0, +'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0)))) →IH
*'(hole_a2_0, *4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)

Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u

Lemmas:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)

Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u

Lemmas:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(16) BOUNDS(n^1, INF)