(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(*(x, y), *(x, z)) → *(x, +(y, z))
+(+(x, y), z) → +(x, +(y, z))
+(*(x, y), +(*(x, z), u)) → +(*(x, +(y, z)), u)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(*(x3385_0, y), *(x3385_0, z)) →+ *(x3385_0, +(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / *(x3385_0, y), z / *(x3385_0, z)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
+'(*'(x, y), *'(x, z)) → *'(x, +'(y, z))
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(*'(x, y), +'(*'(x, z), u)) → +'(*'(x, +'(y, z)), u)
Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+'
(8) Obligation:
TRS:
Rules:
+'(
*'(
x,
y),
*'(
x,
z)) →
*'(
x,
+'(
y,
z))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
*'(
x,
y),
+'(
*'(
x,
z),
u)) →
+'(
*'(
x,
+'(
y,
z)),
u)
Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u
Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))
The following defined symbols remain to be analysed:
+'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_*':u3_0(
+(
1,
n5_0)),
gen_*':u3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
+'(gen_*':u3_0(+(1, 0)), gen_*':u3_0(+(1, 0)))
Induction Step:
+'(gen_*':u3_0(+(1, +(n5_0, 1))), gen_*':u3_0(+(1, +(n5_0, 1)))) →RΩ(1)
*'(hole_a2_0, +'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0)))) →IH
*'(hole_a2_0, *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
+'(
*'(
x,
y),
*'(
x,
z)) →
*'(
x,
+'(
y,
z))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
*'(
x,
y),
+'(
*'(
x,
z),
u)) →
+'(
*'(
x,
+'(
y,
z)),
u)
Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u
Lemmas:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
+'(
*'(
x,
y),
*'(
x,
z)) →
*'(
x,
+'(
y,
z))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
*'(
x,
y),
+'(
*'(
x,
z),
u)) →
+'(
*'(
x,
+'(
y,
z)),
u)
Types:
+' :: *':u → *':u → *':u
*' :: a → *':u → *':u
u :: *':u
hole_*':u1_0 :: *':u
hole_a2_0 :: a
gen_*':u3_0 :: Nat → *':u
Lemmas:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_*':u3_0(0) ⇔ u
gen_*':u3_0(+(x, 1)) ⇔ *'(hole_a2_0, gen_*':u3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)